Telegram Group & Telegram Channel
Common Mistakes Data Analysts Must Avoid ⚠️📊

Even experienced analysts can fall into these traps. Avoid these mistakes to ensure accurate, impactful analysis!

1️⃣ Ignoring Data Cleaning 🧹
Messy data leads to misleading insights. Always check for missing values, duplicates, and inconsistencies before analysis.

2️⃣ Relying Only on Averages 📉
Averages hide variability. Always check median, percentiles, and distributions for a complete picture.

3️⃣ Confusing Correlation with Causation 🔗
Just because two things move together doesn’t mean one causes the other. Validate assumptions before making decisions.

4️⃣ Overcomplicating Visualizations 🎨
Too many colors, labels, or complex charts confuse your audience. Keep it simple, clear, and focused on key takeaways.

5️⃣ Not Understanding Business Context 🎯
Data without context is meaningless. Always ask: "What problem are we solving?" before diving into numbers.

6️⃣ Ignoring Outliers Without Investigation 🔍
Outliers can signal errors or valuable insights. Always analyze why they exist before deciding to remove them.

7️⃣ Using Small Sample Sizes ⚠️
Drawing conclusions from too little data leads to unreliable insights. Ensure your sample size is statistically significant.

8️⃣ Failing to Communicate Insights Clearly 🗣️
Great analysis means nothing if stakeholders don’t understand it. Tell a story with data—don’t just dump numbers.

9️⃣ Not Keeping Up with Industry Trends 🚀
Data tools and techniques evolve fast. Keep learning SQL, Python, Power BI, Tableau, and machine learning basics.

Avoid these mistakes, and you’ll stand out as a reliable data analyst!

Share with credits: https://www.tg-me.com/sqlspecialist

Hope it helps :)



tg-me.com/pythonanalyst/976
Create:
Last Update:

Common Mistakes Data Analysts Must Avoid ⚠️📊

Even experienced analysts can fall into these traps. Avoid these mistakes to ensure accurate, impactful analysis!

1️⃣ Ignoring Data Cleaning 🧹
Messy data leads to misleading insights. Always check for missing values, duplicates, and inconsistencies before analysis.

2️⃣ Relying Only on Averages 📉
Averages hide variability. Always check median, percentiles, and distributions for a complete picture.

3️⃣ Confusing Correlation with Causation 🔗
Just because two things move together doesn’t mean one causes the other. Validate assumptions before making decisions.

4️⃣ Overcomplicating Visualizations 🎨
Too many colors, labels, or complex charts confuse your audience. Keep it simple, clear, and focused on key takeaways.

5️⃣ Not Understanding Business Context 🎯
Data without context is meaningless. Always ask: "What problem are we solving?" before diving into numbers.

6️⃣ Ignoring Outliers Without Investigation 🔍
Outliers can signal errors or valuable insights. Always analyze why they exist before deciding to remove them.

7️⃣ Using Small Sample Sizes ⚠️
Drawing conclusions from too little data leads to unreliable insights. Ensure your sample size is statistically significant.

8️⃣ Failing to Communicate Insights Clearly 🗣️
Great analysis means nothing if stakeholders don’t understand it. Tell a story with data—don’t just dump numbers.

9️⃣ Not Keeping Up with Industry Trends 🚀
Data tools and techniques evolve fast. Keep learning SQL, Python, Power BI, Tableau, and machine learning basics.

Avoid these mistakes, and you’ll stand out as a reliable data analyst!

Share with credits: https://www.tg-me.com/sqlspecialist

Hope it helps :)

BY Python for Data Analysts


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/pythonanalyst/976

View MORE
Open in Telegram


Python for Data Analysts Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Python for Data Analysts from hk


Telegram Python for Data Analysts
FROM USA